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S1. THEORY

S1.1. Quantized Electron Transfer Model with Vibrons

S1.1.1. Single-Vibrational Mode Model

For a single-vibrational mode, the nuclear Hamiltonian for the reduced and oxidized

molecular configurations, respectively, can be written as [1, 2]

Ĥmol = Ered +− h̄2

2M
∂2

∂x2
+

1

2
Mω2x2 (S1)

Ĥ+
mol = Eox +− h̄2

2M
∂2

∂x2
+

1

2
Mω2(x−

√
2ζl)2 (S2)

where x represents its coordinate,M its mass, ω its frequency, ζ its dimensionless electron-

vibronic coupling parameter [2], and the characteristic length is given by l = (h̄/Mω)1/2.

Here we assume that the mass and frequency of a vibrational mode do not change upon

oxidation/reduction. Moreover, to remain consistent with our ferrocene (Fc) molecule under

examination, a positive charge superscript (+) is appended to distinguish the oxidized Fc+

Hamiltonian from the reduced Fc Hamiltonian. For the single mode Hamiltonian, the nuclear

wavefunctions and energies are given by

Ĥmolχm =
(
Ered + (1/2 +m)h̄ω

)
χm (S3)

Ĥ+
molχ

+
n =

(
Eox + (1/2 + n)h̄ω

)
χ+
n . (S4)

here we use vibronic indices m and n for the reduced and oxidized configurations, respec-

tively. The equilibrium occupation probability of each vibronic eigenstate is given by

Pm ≈ e−mh̄ωj/kBT (1− e−h̄ωj/kBT ) (S5)

P+
n ≈ e−nh̄ωj/kBT (1− e−h̄ωj/kBT ) (S6)

and is arrived at by defining a partition function for the mode [3]. Experimentally, we have

determined that the lowest lying mode observed is of the energy h̄ω1 = 11.6kBT = 4.6 meV

at T = 4.7 K. This corresponds to an equilibrated occupation of probability of nearly 1 for

the zero-point vibronic eigenstates. That is, P0 ≈ 1 and P+
0 ≈ 1, similarly Pm≥1 ≈ 0 and

P+
n≥1 ≈ 0, at T = 4.7 K.
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Now, the electron transfer rate between two configurations within the total energy picture

is expressed as [1, 4]

ki→f ≈
2π

h̄
|M |2|〈χi|χf〉|2 δ(Ei − Ef ) (S7)

where Ei and Ef are the initial (i) and final (f) state total energies, |M |2 is the electronic

coupling, and h̄ is Planck’s constant. Here we use a slightly different index notation from

the main text, to avoid confusion with vibrational mode energies in this more expansive

discussion. Note that in the voltage-biased systems, total energy is in fact the Helmholtz

free energy which includes the work done by voltage sources [4].

An equivalent representation can be written within the single-particle energy picture in

the form [5]

ki→f ≈
2π

h̄
|M |2 |〈χi|χf〉|2 δ(εi − εf ) (S8)

where εi and εf are the initial and final state single-particle energies [5]. A single-particle

energy represents the cost of adding/removing an electron; so if two single-particle energies

are the same, then the total energy is also conserved in an electron transfer event between

them [5]. The primary difference between the two pictures, is how the electronic coupling

|M |2 is computed. Eq. (S8) uses single-particle electron wavefunctions, while Eq. (S7) utilizes

many-body electronic wavefunctions (which are needed to arrive at total energy electronic

eigenstates). In our analysis, the electronic coupling is approximated as a constant (|M |2),

so the choice of representation is a matter of convenience. Here we utilize the single-particle

picture to describe the electron transfer rate to/from a single-particle state in the gold

substrate from/to a single-particle state in Fc/Fc+. Since, there exists a range of single-

particle energies (ε) inside the gold substrate (S) in the form of a density-of-states (DS),

our electron transfer rate to single-particle energy εm on the oxidized Fc+ molecule can be

written as [5, 6]

kS→m =
2π

h̄
|M |2

∣∣〈χ+
0

∣∣χm〉∣∣2 ∫ DS(ε)f(ε)δ(ε− εm)dε. (S9)

Note, we are assuming that the molecule is thermally equilibrated prior to electron transfer in

the χ+
0 zero-point oxidized state (n=0) at T = 4.7 K, as discussed above, and is transitioning

to the reduced state vibronic configuration χm. For this transition, the oxidized configuration

single-particle energies are given by ε = εmol +mh̄ω, with εmol = Ered−Eox. In the absence
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of electron-vibronic coupling, εmol = Ered − Eox is the single-particle energy for electron

addition/removal (e.g., highest occupied molecular orbital energy). The substrate states are

occupied according the Fermi-Dirac distribution

f(ε) =
1

1 + e(ε−εF)/kBT
(S10)

with respect to the Fermi energy, εF (see Fig. 3b in the main manuscript). Eq. (S9) is an

extension of Eq. (S8), whereby a transition between two states is converted to an integrated

summation over all possible originating states in the gold substrate weighted by their oc-

cupation probability [1, 6]. Likewise, the electron transfer rate from single-particle energy

state εn on a Fc group in the reduced configuration, to empty states in the substrate is given

by

kn→S =
2π

h̄
|M |2

∣∣〈χ0

∣∣χ+
n

〉∣∣2 ∫ DS(ε)[1− f(ε)]δ(ε− εn)dε (S11)

where the single-particle energies that the electron may depart from on the molecule are

given by εn = εmol − nh̄ω. To arrive at the forward and backwards electron transfer rates

(kf and kb) we sum over all possible transitions

kf =
∑
m

kS→m =
2π

h̄
|M |2DS

∫
f(ε)

∑
m

[ ∣∣〈χ+
0

∣∣χm〉∣∣2 δ(ε− εmol −mh̄ω)
]
dε (S12)

kb =
∑
n

kn→S =
2π

h̄
|M |2DS

∫
[1− f(ε)]

∑
n

[ ∣∣〈χ0

∣∣χ+
n

〉∣∣2 δ(ε− εmol + nh̄ω)
]
dε. (S13)

To simplify the calculation process we have treated DS as a constant, which is typical for a

metal substrate such as gold [1, 2, 5, 6]. The summations that we have brought into each

integral represent the quantum version of the oxidized (Dox) and reduced (Dred) density-of-

states in the low temperature limit [1, 5–7]

[
Dox

]
kBT�h̄ω

=
∑
m

[ ∣∣〈χ+
0

∣∣χm〉∣∣2 δ(ε− εmol −mh̄ω)
]

(S14)

[Dred]kBT�h̄ω =
∑
n

[ ∣∣〈χ0

∣∣χ+
n

〉∣∣2 δ(ε− εmol + nh̄ω)
]
. (S15)

for a single vibrational mode in the spirit of Gerischer as shown in Fig. 3b in the main

manuscript [1, 6]. These distributions are normalized since
∑

m

∣∣〈χ+
0

∣∣χm〉∣∣2 = 1 and∑
n |〈χ0|χ+

n 〉|
2

= 1. At room temperature (kBT ≈ 25 meV) for a single vibrational mode in

the energy range h̄ω � kBT , the quantum distribution recovers the semi-classical Gerischer
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distribution [1, 5–8] [
Dox

]
kBT�h̄ω

=
1√

4πλkBT
exp

(
−(ε− εmol − λ)2

4λkBT

)
(S16)

[Dred]kBT�h̄ω =
1√

4πλkBT
exp

(
−(ε− εmol + λ)2

4λkBT

)
. (S17)

This is accomplished after incorporating the high temperature equilibrium occupation proba-

bilities (Pm and P+
n ) and accounting for transitions from vibronic states above the zero-point

energy [9].

S1.1.2. Relation to the More Realistic Multi-Mode Vibronic System

In this section we discuss why the formerly presented simplified single-mode model is

suitable for the system under study. In general a molecule such as Fc will possess multiple

vibrational modes with frequencies ωj. Under this broader scenario, the nuclear Hamiltonian

for the reduced and oxidized molecular configurations, respectively, can be written as [1]

Ĥmol = Ered +
N∑
j=1

(
− h̄2

2Mj

∂2

∂x2
j

+
1

2
Mjω

2
jx

2
j

)
(S18)

Ĥ+
mol = Eox +

N∑
j=1

(
− h̄2

2Mj

∂2

∂x2
j

+
1

2
Mjω

2
j (xj −

√
2ζjlj)

2
)

(S19)

where xj represents the normal coordinate of a given vibrational mode, Mj its mass, ωj

its frequency, ζj its dimensionless electron-vibronic coupling parameter [2], and the char-

acteristic length of each mode is given by lj = (h̄/Mjωj)
1/2. Again, we assume that the

mass and frequency of a mode do not change upon oxidation/reduction. The eigenstates

and eigenenergies of each vibrational mode are given by

Ĥmolχ̃j,m =
(
Ered + (1/2 +m)h̄ωj

)
χ̃j,m (S20)

Ĥ+
molχ̃

+
j,n =

(
Eox + (1/2 + n)h̄ωj

)
χ̃+
j,n. (S21)

Just as was done with the single-vibrational mode, here we use vibronic index m for the

reduced state and vibronic index n for the oxidized state. The heterogeneous reorganization

energy of each vibrational mode is given by λj = ζ2
j h̄ωj [2], such that the total heterogeneous

reorganization energy of the molecule is [10]

λtot =
N∑
j=1

λj. (S22)
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It is important to note that λtot is the quantity typically associated with room temperature

electron transfer experiments, however in our measurements only the lowest lying vibrational

mode ω1 (and therefore reorganization energy λ1) drives nuclear coupling dependence in the

electron transfer events explored. Hence, our application of a single-mode model to interpret

the experimental data.

There are two reasons for this. Firstly, the small bias applied between the molecule and

substrate is only sufficient to excite the lowest lying vibrational mode (h̄ω1 = 4.6 meV).

The next highest vibrational mode for isolated Fc has been measured in earlier work to be

h̄ω2 ≈ 22.3 meV [11]. Secondly, the temperature of the system (4.7 K) drives the zero-point

energy occupation for each vibrational mode very close to 1 (as discussed previously for

a single-vibrational mode). In this low temperature limit, the overall equilibrium nuclear

wavefunction for the system in the reduced and ground states can be expressed as [1, 12]

χ0 =
1√
N !
P
[ N∏
j=1

χ̃j,0(xj)
]

(S23)

χ+
0 =

1√
N !
P
[ N∏
j=1

χ̃+
j,0(xj)

]
. (S24)

across the set of vibronic coordinates {xj}. The operator P produces N -factorial per-

mutations of the nuclear eigenstate coordinate assignments to provide a symmetric boson

wavefunction. Now, since the low bias applied between the molecule and substrate is only

able to excite the lowest lying vibrational mode (h̄ω1), our transitions are to excited states

of the form

χm =
1√
N !
P
[
χ̃1,m(x1)

N∏
j=2

χ̃j,0(xj)
]

(S25)

χ+
n =

1√
N !
P
[
χ̃+

1,n(x1)
N∏
j=2

χ̃+
j,0(xj)

]
. (S26)

The corresponding Franck-Condon coupling factors for transition for the reduced configura-

tion to the oxidized configuration are then given by

|
〈
χ0

∣∣χ+
n

〉
|2 = |

〈
χ̃1,0

∣∣χ̃+
1,n

〉
|2

N∏
j=2

|
〈
χ̃j,0
∣∣χ̃+

j,0

〉
|2 + c.c ≈ |

〈
χ̃1,0

∣∣χ̃+
1,n

〉
|2

N∏
j=2

|
〈
χ̃j,0
∣∣χ̃+

j,0

〉
|2 (S27)
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and that from the oxidized configuration to the reduced configuration are likewise

|
〈
χ+

0

∣∣χm〉 |2 = |
〈
χ̃+

1,0

∣∣χ̃1,m

〉
|2

N∏
j=2

|
〈
χ̃+
j,0

∣∣χ̃j,0〉 |2 + c.c. ≈ |
〈
χ̃+

1,0

∣∣χ̃1,m

〉
|2

N∏
j=2

|
〈
χ̃+
j,0

∣∣χ̃j,0〉 |2.
(S28)

Again, here we assume that the molecule reaches thermal equilibrium prior to each elec-

tron transfer event. We have also assumed that the cross coupling terms between vibra-

tional modes are negligible (c.c. ≈ 0). Importantly, under this approximation, coupling

contributions for all high energy vibrational modes (j ≥ 2) resolve out to constant factor

(
∏N

j=2 |
〈
χ̃+
j,0

∣∣χ̃j,0〉 |2 =
∏N

j=2 |
〈
χ̃j,0
∣∣χ̃+

j,0

〉
|2) for the low energy excitations considered. Thus,

it the lowest lying mode reorganization and vibronic energies (λ1 and h̄ω1) which are pri-

marily of concern in the electron transfer events we have explored.

S1.2. Electron Transfer Rates Expressions for Biased System

Within our AFM system, an electron transfer event is facilitated by shifting the gold

substrate Fermi energy (εF) with respect to the molecule level by an amount −eα(z(t))VB

(see Fig. 1 in the main manuscript) [13], which controls energy detuning that describes the

offset between εmol and εF in the form ∆ε(t) = εF − eα(z(t))VB − εmol. The detuning varies

in time due to the sinusoidal oscillation of the AFM tip. When ∆ε = 0, the molecular

eigenstate is brought into resonance (or “in tune”) with substrate Fermi-level by the applied

bias. To account for these specific measurement details, we have found it helpful to write

electron transfer rates for our AFM system in terms of t and VB with the form

kf
(
t, VB) =

2π

h̄
|M |2DS

∫
f(ε− eα(z(t))VB)

∑
m

[ ∣∣〈χ+
0

∣∣χm〉∣∣2 δ(ε− εmol −mh̄ω)
]
dε (S29)

kb
(
t, VB) =

2π

h̄
|M |2DS

∫
[1−f(ε− eα(z(t))VB)]

∑
n

[ ∣∣〈χ0

∣∣χ+
n

〉∣∣2 δ(ε− εmol + nh̄ω)
]
dε.

(S30)

Examples of kf and kb are plotted as a function of time in Fig. S1(c) and (d), respectively.

S1.3. Atomic Force Microscopy Model

In the experiments, the AFM tip is used both as a movable gate and a sensitive charge

sensor by forming a single-electron box with the molecule and the back-electrode[14]. For a
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small cantilever oscillation compared to the tip-molecule separation, the capacitance of the

tip varies linearly with z and the interaction Hamiltonian can be linearized:

Hint = Anz (S31)

where z is the position of the cantilever and A ≡ −eVB
dα

dz
=
d∆ε

dz
is the molecule-AFM

coupling strength [15]. The cantilever is described as a driven, damped harmonic oscillator

with a resonance frequency, f0, spring constant, c and quality factor, Q. Since during the

experiment, the trajectory of the oscillator remains harmonic (z(t) = z̄ + d cos(2πf0t))

and the frequency shift due to electron tunneling is small (∆f � f0), the description of

the coupled electromechanical system is dramatically simplified by focusing on the simpler

dynamics of system averages, an approach justified by comparison with full simulations

[16] This results in time-dependent forward and backward tunneling rates kf (∆ε(t)) and

kb(∆ε(t)) to respectively add and remove an electron from the molecule. In turn, this

perturbation modulates the average charge occupation, p(t), through the rate equation

∂p

∂t
= −kb(∆ε(t)) p+ kf (∆ε(t)) (1− p) (S32)

which is measured as an electrostatic force acting on the tip, F (t) = Ap(t). The in-phase

component of that force, with respect to the motion of the tip, will result in a frequency

shift [16]

∆f = −f
2
0

cd

∫ 1/f0

0

F (t) cos(2πf0t) dt. (S33)

This is illustrated in Fig. S1 where the time trajectories discussed above are evaluated in

order to obtain the frequency shift response ∆f . First, we have the cantilever tip trajectory

z(t) (Fig. S1a). Second, the energy detuning as a function of time ∆ε(z(t)) (Fig. S1b)

created by the cantilever tip oscillation. Third, we compute the tunneling rates kf (∆ε(t))

and kb(∆ε(t)) as a function of time (Fig. S1c). Fourth, using those rates, we compute

the charge response of the molecule, p(t), which satisfies Eq. S32 (Fig. S1d). Finally, the

cantilever resonance frequency will shift proportionally to the in-phase component of the

back-action force F (t) = Ap(t) to its motion according to Eq. S33.

S2. OVERVIEW IMAGES OF THE SAMPLE

Figure S2 shows the frequency shift and dissipation images of the sample with larger

scan area. Multiple charge rings are clearly seen in the dissipation image which indicate the
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. S1. Time trajectories of the mean values of interest over one tip oscillation period. a)

Position of the cantilever. b) Energy detuning in time, ∆ε, controlled by the mean tip-sample

distance or bias VB with a fixed harmonic modulation Ad = 60kBT . c,d) Associated tunneling

rates in and out assuming parameters ζ = 1.67, h̄ω = 25kBT and Γ = πf0. e) Average charge on

the molecule, expressed as a probability of occupation p(t), obtained by solving the simplified rate

equation Eq. S32. f) Time derivative of probability p(t) clearly reveals the effect of discrete jumps

in tunneling rates due to the opening of additional vibronic transitions.
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variability of the surrounding environment of Fc groups in the sample. It is important to

note that the rings are much more difficult to be seen in the frequency shift image because

the contribution of the topography to the image contrast often overwhelms the contrast due

to the charging (rings).

(a) (b)

FIG. S2. Constant-height frequency shift and dissipation images with larger scan area taken at

VB = 5 V. Scale bar is 400 nm.

S3. AFM ENERGY CALIBRATION

S3.0.1. Lever-arm α

In a linear regime where kf (∆ε(t)) and kb(∆ε(t)) linearly depends on the energy detuning

∆ε(t), the above problem is analytically solvable and the frequency shift is given by:

∆f = −f0A
2

2c

(k′f (kf + kb)− kf (kf + kb)
′)

(kf + kb)2 + ω2
(S34)

where ′ denotes derivative with respect to energy evaluated at the mean value of ∆ε [17, 18].

In Figure S3, we estimate the value of α from a fit to the peak shape measured at the

lowest oscillation amplitude obtaining a value of ᾱ = 0.035.

S3.0.2. Coupling strength A

The coupling strength, A, is computed from the evolution of the charging peak’s width

as the oscillation amplitude, d, is increased. Because energy is conserved upon tunneling,
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Δ
f (

H
z)

Bias voltage, VB (V)

|d
Δ
f /

dV
| (

a.
u.

)

FIG. S3. AFM frequency shift response (top) and its derivative with respect to the bias voltage

VB (bottom) acquired at oscillation amplitude d= 0.1 nm (red line) compared with theory (blue

line) using the model parameters ζ = 1.67 and h̄ω = 11.6 kBT = 4.6 meV. The lever-arm and its

first derivative were calibrated to be α = 0.035 and A = −eVB dα/dz = 36 meV/nm.

signal will only appear in the range of VB given by VB = [V 0
B −

A

eᾱ
d, V 0

B +
A

eᾱ
d] where V 0

B is

the charging peak’s center position (which corresponds to ∆ε = 0 as explained in the main

text). Note that the quantity, Ad, is approximately equal to δ∆ε which is the maximum

change in the energy detuning, ∆ε(z(t)), caused by z(t). The bias range for which this

condition is met will enlarge as the oscillation amplitude, d, increases. We estimate the

width of this bias range for each measured spectrum by identifying the smallest and the

largest values of VB at which the signal is observed (marked as circles in Fig. S4a). Using

those values, we compute the peaks’ half width and in Fig. S4b), we compare the values at

different oscillation amplitudes, d. The two quantities are linearly related by a slope
A

eᾱ
.

By performing a least-square fit regression of the form

A

eᾱ
d+ const. = half width at base (S35)
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we extract the coupling strength, A, to be 1.0 ᾱ eV/nm (A = 35 meV/nm for ᾱ = 0.035

obtained in the previous section). This calibration procedure has been tested for accuracy

by analyzing theoretical peak shapes of known coupling strength. The A extracted by the

procedure above underestimated the theoretical values by roughly 5%.
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40
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100

120(a) (b)

Bias voltage, VB (V)

Δ
f (

H
z)

Oscillation amplitude, d (pm)

H
al

f w
id

th
 a

t b
as

e 
(V

)

FIG. S4. a) Frequency shift (∆f) spectra, with increasing AFM oscillation amplitude, above a Fc

group. Red circles indicate biases at which tunneling becomes allowable and hence charging start

to develop. b) Half width of the charging peak at base versus oscillation amplitude d. The black

line is a linear regression yielding a slope A
ᾱ of 1.0 mV/pm.

S4. MOVIE S1 AND S2

Schematic representation of the electron transfer process between the metallic electrode and Fc

group at a small tip oscillation amplitude of 0.10 nm in which ∆ε � h̄ω (S1) and at a large tip

oscillation amplitude of 0.35 nm in which ∆ε > h̄ω (S2). VB is being swept throughout each movie

as time evolves.
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(a) Schematic of the AFM experimental setup. An oscillating AFM cantilever tip is capacitively

coupled to the molecule in vacuum. A dc bias voltage, VB, that is applied between the

tip and substrate causes a voltage drop, α(z)VB, across the tunnel barrier between the

metallic substrate and the molecule of interest. For a small tip oscillation amplitude, d,

compared to the mean tip-sample distance, z̄, the voltage drop is modulated in time as

α(t) ≈ α(z̄) + dα
dz d cos(2πf0t) (inset).

(b) Potential profile along the line passing through the AFM tip and Fc group under a contant

VB. As the tip oscillates vertically, the potential at the molecule oscillates accordingly.

(c) Schematic representation of the free energy of the Fc (red) and Fc+ (blue) redox state under

a DC bias, VB. The holizontal axis is the nuclear coordinate. The potential energy of the

molecule is approximated as a parabola. The equillibrium coordinates of the reduced (red)

and oxidized (blue) states are shifted by
√

2ζ where ζ is an electron-nuclear coupling strength.

The nuclear wavefunctions are drawn at each corresponding energy in each parabola.

(d) Schematic energy single-particle energy diagram of the metal-Fc system. The electrons in the

metallic electrode follow Fermi-Dirac distribution. The nuclear coupling weighted electron

transition probabilities are represented by blue lines for Fc+ to Fc state transition and by

red lines for Fc to Fc+ state transition.

(e) Associated forward (kf ) and backward (kb) electron transfer rates as a function of the energy

detuning, ∆ε. Nuclear vibronic transitions are separated by quantized vibronic energy, h̄ω

whose origin is the molecular single-particle energy εmol.

(f) Time trajectories of the electron transfer rate as well as the associated average charge occu-

pation, p(t), solution to Eq. S32.

(g) The experimental (orange curve) and theoretical (black curve) frequency shift response of

the AFM calculated from Eq. S33.

S4.1. Description of Movie S1 (small oscillation amplitude case)

Sequence 1 (from 00:00 to 00:25): ∆ε remains below 0, leading to kb > 0 but kf = 0 throughout

the whole oscillation periods. As a result, p(t) remains zero. No ∆f response results.
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Sequence 2 (from 0:25 to 00:42): ∆ε can alternate between ∆ε > 0 and ∆ε < 0 in response to the

tip oscillation, enabling tunneling-in (reduction) and tunneling-out (oxidation) in one oscillation

period. As a result, p(t) oscillates. ∆f signal increases as ∆̄ε reaches 0.

Sequence 3 (from 0:43 to the end): ∆ε remains above 0, leading to kb = 0 but kf > 0 throughout

the whole oscillation periods. As a result, p(t) remains one. No ∆f response results.

S4.2. Description of Movie S2 (large oscillation amplitude case)

Sequence 1 (from 00:00 to 00:04): ∆ε remains below 0, leading to kb > 0 but kf = 0 throughout

the whole oscillation periods. As a result, p(t) remains zero. No ∆f response results.

Sequence 2 (from 0:05 to 00:42): ∆ε can alternate between ∆ε > 0 and ∆ε < 0 in response to the

tip oscillation, enabling tunneling-in (reduction) and tunneling-out (oxidation) in one oscillation

period. As a result, p(t) oscillates. ∆f signal increases as ∆ε reaches 0 (0:33). Each time ∆ε

reaches the next peak of the transition probability (shown as lines in (d)), kb (or/and kf ) changes

stepwise manner, resulting in increase in the amplitude of p(t).

Sequence 3 (from 0:43 to the end): ∆ε remains above 0, leading to kb = 0 but kf > 0 throughout

the whole oscillation periods. As a result, p(t) remains one. No ∆f response results.
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